
Improving Static Analyses of C Programs

with Conditional Predicates

Sandrine Blazy1, David Bühler2, and Boris Yakobowski2

1 IRISA - University of Rennes, France
sandrine.blazy@irisa.fr

2 CEA, LIST, Software Safety Lab, 91191 Gif-sur-Yvette, France
{david.buhler,boris.yakobowski}@cea.fr

Abstract. Static code analysis is increasingly used to guarantee the ab-
sence of undesirable behaviors in industrial programs. Designing sound
analyses is a continuing trade-off between precision and complexity. No-
tably, dataflow analyses often perform overly wide approximations when
two control-flow paths meet, by merging states from each path. This
paper presents a generic abstract interpretation based framework to en-
hance the precision of such analyses on join points. It relies on pred-
icated domains, that preserve and reuse information valid only inside
some branches of the code. Our predicates are derived from conditionals
statements, and postpone the loss of information. The work has been in-
tegrated into Frama-C, a C source code analysis platform. Experiments
on real code show that our approach scales, and improves significantly
the precision of the existing analyses of Frama-C.

1 Introduction

Formal program verification is an increasingly sought-after approach to guaran-
tee the absence of undesirable behaviors in software. Static code analysis has
already shown its industrial applicability to prove safety properties on critical or
embedded code. Still, so as to remain tractable, these analyses involve sound but
incomplete approximations of a program behavior. This may lead to false alarms,
when some required properties cannot be proved statically even though they al-
ways hold at runtime. Abstract interpretation [5,6] is a well-known framework to
over-approximate program executions through abstractions of the most precise
mathematical characterization of the program. Designing such abstractions is a
continuing trade-off between precision and efficiency.

Flow-sensitivity, which allows to infer static properties that depend on pro-
gram points, is often considered as a prerequisite to obtain a precise program
analysis. More agressive analyses are path-sensitive: the analysis of a program
statement depends on the control-flow path followed to reach this statement.
Nevertheless, most analyses sacrifice full path-sensitivity and perform approx-
imations when two control-flow paths meet. Those approximations may lead
to a significant loss of precision, and may preclude inferring some interesting
properties of the program.

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 140–154, 2014.
c© Springer International Publishing Switzerland 2014

Improving Static Analyses of C Programs with Conditional Predicates 141

1 i f (f l a g 1)
2 { fd1 = open (path1) ;
3 i f (fd1 ==−1) e x i t () ; }
4 [. . .] // code 1

5i f (f l a g 2)
6{ fd2 = open (path2) ;
7i f (fd2 ==−1) {
8i f (f l a g 1) c l o s e (fd1) ;
9e x i t () ; } }
10[. . .] // code 2
11i f (f l a g 1) c l o s e (fd1) ;
12i f (f l a g 2) c l o s e (fd2) ;

Fig. 1. Example of interleaved conditionals

Consider as an example the code fragment of Fig. 1. Proving that the three
calls to the close function are correct, i.e. that the corresponding fd variable
has been properly created, heavily relies on the possible values for the flag1 and
flag2 variables. An analysis that does not keep track of the relation between
flag1 and fd1 on the one hand, and flag2 and fd2 on the other hand, will not
be able to prove that the program is correct.

In this paper, we define an analysis in which information about the condi-
tionals that have been encountered so far is retained using boolean predicates.
These predicates guard the values inferred about the program. Our analysis is
parameterized by a pre-existing analysis domain, which we use to derive a new
predicated analysis. More precisely, we propagate two kinds of information that
are not present in the original domain: a context and an implication map.

1. A context is a boolean predicate synthesized from the guards of the con-
ditionals that have been reached so far, and that is guaranteed to hold at
the current program point. In our example, at the beginning of line 8, the
context would be flag2 ∧ (fd2 = −1).

2. An implication map is a set of facts from the original analysis domain,
guarded by boolean predicates. Each fact is guaranteed to hold when its
guard holds. Implication maps postpone the loss of precision usually present
at join points. In our example, assuming the existence of an analysis that
verifies the validity of file descriptors, the implication map after line 6 would
consist of the two following implications:

flag1 �→ valid fd (fd1) true �→ valid fd (fd2) ∨ (fd2 = −1)

The first implication results from the analysis of the conditionals at lines 1-
3; it precisely models the information we need between flag1 and fd1. The
second implication is simply the postcondition of the open function, which
holds unconditionnaly: either open succeeds, or it fails with a return code
of −1.

Our framework, based on abstract interpretation, is generic. We also integrated
it into Frama-C, a modular platform dedicated to the analysis of C code [8].
Frama-C provides various sound analyses based on abstract interpretation, de-
ductive verification or testing, implemented by a collection of plugins built
around a common kernel. These plugins collaborate through logical properties
expressed in acsl, a C specification language [1,4]. Among them, the value anal-
ysis plugin [9,3] performs a forward dataflow analysis over intricate low-level

142 S. Blazy, D. Bühler, and B. Yakobowski

abstract domains to compute an over-approximation of the possible values of
variables at each program point. It aims at ensuring the absence of run-time
errors in a given program. Our experiments show that predicated analyses over
much simpler domains may significantly enhance and complement the results of
the value analysis.

Related Work. Different approaches have been proposed in the litterature to
solve instances of the problem we are addressing. Trace-partitioning [14] and
boolean partitioning [7] would keep separate the different execution traces com-
ing from the conditionals on flag1 and flag2 in Fig. 1. One downside is that
code 1 may need to be analyzed twice, and code 2 up to four times. To avoid a
blow-up in analysis time, the analyzer would need to reuse some parts of previous
analyses. However, this requires a modular analysis and significant implementa-
tion efforts. Also, traces should be merged when it is no longer useful to keep
them seperate. Syntactic criteria need to be used to detect such merge points.
Conversely, trace partitioning can be used to unroll loop symbolically, something
our approach does not handle. Predicate abstraction [11] would propagate a sin-
gle fact along all execution paths, but this fact may be arbitrarily complex. In
particular, the predicate is found incrementally, and refined until it is sufficient
to guarantee the property under consideration. In our example, the predicate
would likely link flag1, fd1, flag2 and fd2. Using this approach, [10] shows
how to transform any existing dataflow analysis into a predicated one, the pred-
icates being found by successive refinement iterations. Still, finding the proper
predicate may be abitrarily complex, resulting in hard to predict analysis times.
Also, the refinement phase requires decidable theories and powerful decision pro-
cedures to find the counter-examples from which the predicate is deduced. We
instead chose to limit ourselves to first-order predicates relating the conditionals
present in the program.

The remainder of this paper is organized as follows. First, Sect. 2 introduces
our language, simplified for the sake of illustration. Section 3 defines predicated
domains and explains how to build a predicated analysis over a standard dataflow
analysis, which we further improve in Sect. 4. Sect. 5 describes two domains that
we used to validate our framework. Then, Sect. 6 presents the experimental eval-
uation of our practical implementation. Finally, Sect. 7 draws some conclusions.

2 A Generic Abstract Interpretation Based Framework

Our static analysis is based on abstract interpretation [5,6], and handles the
whole C language. However, for the sake of brevity, we only present here a toy
language. Abstract interpretation links a very precise, but generally undecidable,
concrete semantics, to an abstract decidable one – the abstract semantics being
a sound approximation of the concrete one. This section first defines the syntax
of our toy language, then its concrete and abstract semantics.

Syntax. Figure 2 presents the syntax of our language. Programs operate over
a fixed, finite set of variables V whose values belong to an unspecified set V.

Improving Static Analyses of C Programs with Conditional Predicates 143

e ∈ exp ::= x x ∈ V
| v v ∈ V

| e � e
c, p ∈ C ::= e | ¬c | c ∧ c | c ∨ c

i ∈ stmt ::= x := e
| c �

P ∈ prog � P(N× stmt× N)

Fig. 2. Syntax of our language

Expressions are either variables, constants, or the application of a binary oper-
ator � to expressions. We stratify expressions and conditionals, the truth value
of an element of V being given by a mapping T from V to booleans. Statements
are either assignments, or assume filters that halt execution when the condition
does not hold. A program is represented by its control-flow graph where nodes
are integer-numbered program points and edges are labelled by statements. By
convention, the program starts at node 0. Encoding standard program constructs
such as if or for in such graphs is immediate and not detailed in this paper.
For clarity, we write our examples using a C-like syntax.

Concrete Semantics. A concrete state of the program at a node n of its control-
flow graph is described by an environment ρ ∈ VV assigning a value to each
variable. The semantics �e�ρ (resp. �c�ρ) of an expression e (resp. a condition c)
is its evaluation in the environment ρ, and implicitely depends on the evaluation
of the operators �.

Our concrete semantics maps each program node n to the set S (n) of all pos-
sible environments at this point; hence our semantics is a function in P

(
VV) N.

The semantics �i� of a statement i is a transfer function over a set of states,
described in the first equalities of Fig. 3a. After an assignment on x, x is bound
in the new states to the evaluation of the expression. Assume filters block evalu-
ation, only allowing states in which the condition holds. The concrete semantics
of the entire program P is then the smallest solution of the rightmost equations
of Fig. 3a.

Abstract Semantics Abstract interpretation based analyses rely on an abstract
domain L, whose computable elements model a set of concrete states at a given
program point. Such abstract domains must provide:

– a partial order �L according to the precision of abstract states,
– a monotone concretization function γL from L to P

(
VV), linking the ab-

stract states to the concrete ones,
– greatest and smallest elements �L and ⊥L, such that γL(�L) = VV and

γL(⊥L) = ∅,
– sound approximations !L and "L of union and intersection of concrete states,

– sound abstract transfer functions �i��L from L to L that approximate the
concrete semantics.

The correction theorems for the soundness of the abstract semantics are stated
in the leftmost column of Fig. 3b. The abstract semantics is the least solution
of the system of equations in the rightmost column. The soundness properties

144 S. Blazy, D. Bühler, and B. Yakobowski

(a) Concrete semantics

�x := e� (S) � {ρ [x �→ �e�ρ] | ρ ∈ S}
�c �� (S) � {ρ | ρ ∈ S ∧ T (�c�ρ) = true}

S (0) � VV

S (n) �
⋃

(m,i,n)∈P

�i� (S (m))

(b) Abstract semantics
γL(L) = VV

γL(l1) ∪ γL(l2) ⊆ γL(l1 �L l2)

�i� (γL(l)) ⊆ γL(�i��L (l))

S
�
L (0) � 	L

S
�
L (n) �

⊔
L

{
�i��L

(
S
�
L (m)

)
| (m, i, n) ∈ P

}
Fig. 3. Concrete and abstract semantics

ensure that any solution is a correct approximation of the concrete semantics.
In practice, such systems are solved by iterative data-flow analysis [13,2].

Lemma 1. All behaviors of the concrete semantics are captured by the abstract

one. That is, ∀n ∈ P, S (n) ⊆ γL
(
S
�
L (n)

)
We also define an operator called deps from expressions to sets of variables
P(V), that will be useful when computing memory footprints. deps (e) is the set
of variables on which the evaluation of e depends. On our toy language, this
is the set of variables syntactically present in e. However, in a language with
pointers, deps (e) usually depends on the current program point.

3 Predicated Analyses

This section presents our predicated analysis. We first define the domain that
will represent its abstract states, then the transfer function on statements.

3.1 Predicated Domains

Our analysis derives a predicated analysis on top of an abstract domain L. The
additional information is two-fold. First, we add a boolean predicate c ∈ C,
called the context, standing for a set of facts that we know to hold at the current
program point. Second, we add a mapping I from predicates in C to elements
of L, called a map. Maps stand for implications from guards to values; hence
they contain information that are conditional : I(p) = l implies that l is a correct
approximation of the state as soon as p is verified. We use the syntax λp.l to
denote maps, and write 〈p → l〉 for a value l guarded by a predicate p.

We say that 〈p → l〉 is trivial when l = �L, as the value �L brings no in-
formation whatsoever. In order to have a decidable semantics, we restrict our-
selves to maps in which all but a finite number of implications are trivial. To
guarantee that our inclusion operator is antisymmetric, we only consider pairs
of a context and a map in which implications that contradict the context or
are redundant with another (stronger) implication are trivial. Formally, for any

Improving Static Analyses of C Programs with Conditional Predicates 145

	pred � (true, λp.	L)

⊥pred � (false, λp.	L)

(c1, I1) �pred (c2, I2) � c1 ⇒ c2 ∧ ∀p ∈ C, (c1, I1) � 〈p → I2 (p2)〉
(c, I) � 〈p → l〉 � ¬ (c ∧ p) ∨ (∃p′, p ⇒ p′ ∧ I(p′) �L l

)
(c1, I1) �pred (c2, I2) � canonize (c1 ∨ c2 , λp. (l∪ (p) �L l1 (p) �L l2 (p)))

where

⎧⎪⎨
⎪⎩

l∪ (p) =
�

L {I1(p1) �L I2(p2) | p ≡ p1 ∧ p2}
l1 (p) =

�
L {I1(p1) | p ≡ ¬c2 ∧ p1}

l2 (p) =
�

L {I2(p2) | p ≡ ¬c1 ∧ p2}
γpred (c, I) � {ρ | �c�ρ ∧ ∀p ∈ C, �p�ρ ⇒ ρ ∈ γL (I(p))}

Fig. 4. Definition of Lpred, the predicated domain over L

p ∈ C, a pair (c, I) must verify respectively ¬(p ∧ c) ⇒ (I(p) = �L) and
∀p′ ��≡ p, (p ⇒ p′ ∧ I(p′) �L I(p)) ⇒ (I(p) = �L). A context and a map
that do not verify these last two properties can always be canonized into a pair
that does, by mapping the contradictory or redundant implications of I to �L.
We write canonize this operation. We call context-implication-map pair, ranged
over by Φ and abbreviated as CI-pair, a context and a map that verify all these
properties. CI-pairs will represent the abstract state of our predicated analysis.

We define Lpred, the predicated domain over L, as the set of CI-pairs equipped
with the operations of Fig. 4. �pred (resp. ⊥pred) denotes the most general (resp.
most restrictive) context. Both �pred and ⊥pred are made up of trivial implica-
tions only. CI-pairs are ordered by the relation �pred: (c1,I1) is more precise than
(c2,I2) when c1 is stronger than c2, and when (c1, I1) implies all the implications
of I2. This last property is defined using an auxiliary relation � stating that a
CI-pair verifies an implication. The relation (c, I) � 〈p → l〉 holds when either
p contradicts c, or there exists an implication of I stronger than 〈p → l〉.

Example 1. Consider the example of Fig. 5, where L is a basic interval domain.
The notation [i] stands for the singleton interval [i; i]. We write Φi for the state at
the end of line i, its context and non-trivial implications being shown in the two
rightmost columns. For instance, Φ3 maps the three variables assigned at lines 1-
3 to their respective values, under the true guard. The relation Φ7 �pred Φ8,
that relates the state at the end of the else branch and after the first condi-
tional, holds. First, the implications guarded by true and ¬c in Φ8 are implied
by the true-guarded implication of Φ7. Then, the implication guarded by c con-
tradicts the context of Φ7. Finally, all trivial implications of Φ8 are implied by
the corresponding one in Φ7.

Let Φ1 = (c1, I1) and Φ2 = (c2, I2) be two CI-pairs. The join !pred between
them is the smallest CI-pair whose context is implied by c1 and c2, and whose
implications are verified by both Φ1 and Φ2. Its context is simply c1∨c2. Within
the implication map, the operator l∪ combines implications of the two previous

146 S. Blazy, D. Bühler, and B. Yakobowski

1 x = 0 ;
2 y = 0 ;
3 v = 1 ;
4 i f (c) {
5 x = v ;
6 } else {
7 y = v ;
8 }
9 w = 0 ;

10 i f (c) {
11 c = 2 ;
12 }

line
Φline: state after the statement

context implications

3 true true �→ v ∈ [1], x ∈ [0], y ∈ [0]

5 c true �→ v ∈ [1], x ∈ [1], y ∈ [0]

7 ¬c true �→ v ∈ [1], x ∈ [0], y ∈ [1]

8
c ∨ ¬c ≡
true

true �→ v ∈ [1], x ∈ [0, 1], y ∈ [0, 1]

c �→ v ∈ [1], x ∈ [1], y ∈ [0]

¬c �→ v ∈ [1], x ∈ [0], y ∈ [1]

9 true

true �→ v ∈ [1], w ∈ [0], x ∈ [0, 1], y ∈ [0, 1]

c �→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0]

¬c �→ v ∈ [1], w ∈ [0], x ∈ [0], y ∈ [1]

10 c true �→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0]

11 true true �→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0], c ∈ [2]

12 true
true �→ v ∈ [1], w ∈ [0], x ∈ [0, 1], y ∈ [0, 1]

c �→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0], c ∈ [2]

Fig. 5. Example of an analysis using a predicated interval analysis

maps: the L-join of values present under guards p1 and p2 respectively of Φ1

and Φ2 is kept under the new guard p1 ∧ p2. Conversely, the operators l1 and
l2 preserve the values only present in Φ1 or Φ2 respectively. A value valid in Φ1

under a guard p1 may be present in the join provided that the new guard negates
c2 (so that Φ2 also verifies the implication) – resulting in the guard ¬c2 ∧ p1.
Values present in Φ2 are likewise present under guards that negate c1. Note that
this additional information from Φi is thrown away if all guards p∧¬cj contradict
the new context, i.e. whenever ci ⇒ cj .

Example 2. Consider again Fig. 5. We have Φ8 = Φ5 !pred
Φ7. The value implied

by true in Φ8 comes from the operator l∪, and is equal to I5(true)!L I7(true).
Conversely, the value implied by c comes from the operator l1, which negates the
context of Φ7; furthemore, the value is exactly Φ5(true). Note that the intervals
inferred in Φ5 and Φ7 are entirely retained, guarded by the negations of the
converse contexts; no information is actually lost.

Finally, the concretization γpred (c, I) of an element of the predicated domain is
the set of states wherein c is true and all implications of I are valid.

3.2 Abstract Transfer Functions

We now define in Fig. 6 our abstract semantics for statements in Lpred. The gist
of the analysis is to apply the transfer functions of L to each of its elements in
the map, which is carried out by the lift function, while new implications will
be created by !pred for values that are present in only one branch at a junction
point. However, to remain sound, we also need to invalidate predicates (either
in the context or in a guard) whose truth values are possibly modified by a
statement. Following standard dataflow terminology, we define a kill operator,

Improving Static Analyses of C Programs with Conditional Predicates 147

lift (i, (c, I)) �
(
c, λp. �i��L (I (p))

)

kill (x, (c, I)) �

⎛
⎜⎜⎜⎜⎝

{
c if x /∈ deps (c)

true otherwise

λp.

{
I (p) if x /∈ deps (p)

	L otherwise

⎞
⎟⎟⎟⎟⎠

refine (h, (c, I)) � canonize
(
c ∧ h, λp.

�
L
{
I
(
p′
) | h ∧ p ⇒ p′

})
�x := e��pred (Φ) � lift (x := e, kill (x,Φ))

�c ���pred (Φ) � lift (c �, refine (c, Φ))

Fig. 6. Definition of the abstract semantics �.��pred
that removes contexts and implications depending on a certain variable x. This
operator is used after an assignment x := e, as it modifies the value of x.

While kill and lift used in conjunction are sufficient to define a sound abstract
semantics for Lpred, they never use the existing implications or enrich the context.
Yet, the join operation retains specific information of each branch only when they
have different non-true contexts. Thus, we define an operator refine that enriches
the context by a new predicate h ∈ C, supposed to be verified. This operator
also learns information by simplifying the map according to h. More precisely,
the valid value under a guard p is the L-meet of the elements implied by any
guard weaker than p ∧ h.

Within our abstract semantics �.��pred, there are two natural places where
refine may be used. First, after an assume statement c�, the predicate c holds by
definition. Second, after a statement x := e, the equality x = e holds (provided
the value of e does not depend on x). In practice, this second rule rapidly leads to
the creation of intractable contexts. Hence, we only enrich our states on assume
statements. Let us stress that any application of refine(h, ·) is sound, provided h
actually holds. Refining more or less aggressively results in a trade-off between
precision and complexity.

Example 3. At line 4 in Fig. 5, in the branches of the conditional, the operator
refine enriches the context according to the condition. After the conditional, the
context reverts to true due to the join between Φ5 and Φ7. Note that despite
the canonization, the join and the lift function duplicate the value of variables
v and w at line 8 and 9 respectively. At line 10, on a conditional with the same
condition c, the refine operator maps the true guard to I9(true)"LI9(c), as both
true and c are implied by the new context c. We have re-learnt the information
known about x and y at line 5. Meanwhile, the c guard becomes redundant with
the true one, while ¬c contradicts the context. Both implications are changed
to trivial ones by the canonize operator. On line 11, c is overwritten. Hence,
the context c is reset to true by the kill operator. Finally, upon exiting the
conditional, we lose the information coming from the else branch, as negating
the context true would result in a trivial implication, that would never hold.

148 S. Blazy, D. Bühler, and B. Yakobowski

But the information coming from the then branch is preserved under the guard
¬¬c ≡ c.

Lemma 2. Our predicated analysis over Lpred is sound.

γpred (Φ1) ∪ γpred (Φ2) ⊆ γpred
(
Φ1 !pred Φ2

)
�i� (γpred (Φ)) ⊆ γpred

(
�i��pred (Φ)

)
Moreover, we can state a stronger result, that links, at a program point n, the
abstract semantics of S�L with its equivalent S�pred for Lpred.

Theorem 1. Our predicated analysis is as precise as the non-predicated one.

∀n ∈ P, given (cn, In) = S
�
pred (n) , then In(true) �L S

�
L (n)

Of course, the predicated analysis can be more precise. As an example, on line 10
of the program of Fig. 5, the non-predicated analysis would have inferred the
value I9(true). Our own result – namely I10(true) – is much more precise.

4 Improving the Analysis

This section explains how to avoid computing guarded values that are needlessly
redundant, and details some strategies to decrease the complexity of our analysis.

4.1 Avoiding Redundant Values

As previously remarked in example 3, our analysis keeps within implications
more information than needed. Even though we avoid redundant implications
in the map, some values of L may encode information partially present under
weaker guards. Furthermore, the transfer function of the underlying domain may
be costly and it is applied to every element of L in the map. In order to decrease
the practical complexity of the predicated analysis, we require two additional
features from the underlying domain L.

1. A more lightweight transfer function �i, p��L×C over statements i, parame-
terized by the predicate p that guards the processed value. This way, the
analysis can be more precise on the true guard only and avoids the duplica-
tion of new information. Thus, �i, true��L×C may be defined as �i��L, while
�i, ·��L×C applied to a non-true guard should be defined as a very imprecise
operation, that only guarantees the soundness of the analysis on L. For-
mally, we only require �i, ·��L×C to be an over-approximation of �i��L. The
lift operator is then redefined as

lift (i, (c, I)) �
(
c, λp. �i, p��L×C (I (p))

)

Improving Static Analyses of C Programs with Conditional Predicates 149

3 . . .
4 i f (c) {
5 x = v ;
6 } else {
7 y = v ;
8 }
9 w = 0 ;

10 . . .

line context implications after the statement

8
c ∨ ¬c ≡
true

true �→ v ∈ [1] ;x ∈ [0, 1] ; y ∈ [0, 1]

c �→ x ∈ [1] ; y ∈ [0]

¬c �→ x ∈ [0] ; y ∈ [1]

9 true

true �→ v ∈ [1] ;w ∈ [0] ;x ∈ [0, 1] ; y ∈ [0, 1]

c �→ x ∈ [1] ; y ∈ [0]

¬c �→ x ∈ [0] ; y ∈ [1]

Fig. 7. Analysis of Fig. 5 with factorization

2. A difference operation \L that discards information already contained in
another element of L, that we use to simplify implication maps. Ideally,
a \L b should be as large as possible, while retaining all the information of a
not already present in b. To be sound, we require a �L a \L b. We define an
operator reduce, that simplifies each implication by all the values mapped to
weaker guards, and we use it whenever we need to canonize a map (i.e. after
a join or a refinement).

reduce (I) � λp. I (p) \L
(�

L {I (q) | p ⇒ q, p �≡ q}
)

canonize′ (Φ) � reduce (canonize (Φ))

These two operators may lose a lot of information; ideally, they would just keep
the values that the non-predicated analysis fails to compute.

Example 4. Let us come back to the example of Fig. 5, improved in Fig. 7. When
joining the values coming from lines 5 and 7, the reduce operator removes under
the guards c and ¬c the information about v, which is already present under the
weaker guard true. In parallel, after line 9, the modified lift operator does not
apply the full interval analysis to the values guarded by c and ¬c. Instead, we
use a simpler abstraction, that only removes information about variables that
are overwritten. This way, the information about w is no longer duplicated.

4.2 Convergence of the Analysis and Practical Complexity

Throughout the analysis of a given program, all guards of non trivial implications
present in a map are derived from the conditionals of the program, so their
number remains finite. In practice, this number can be high; we discuss a possible
way of limiting it in Sect. 6. The predicated analysis essentially amounts to
performing the underlying analysis over the values under each guard (except for
the refine operations, which allow us to be more precise). Thus, if the underlying
domain provides (or requires) a widening operator to effectively compute the
fixpoint, then it can (and should) be lifted as well. Finally, if the underlying
transfer functions are monotonic, so are the predicated ones, which ensures the
termination of our analysis.

150 S. Blazy, D. Bühler, and B. Yakobowski

Some operators of the abstract semantics may seem costly to compute, but
efficient implementations or simpler operators can mitigate this. For instance, at
a junction point of the control-flow graph, Φ1 !pred Φ2 creates fresh implications
through the operators l1, l2 and l∪ (Fig. 4). Both l1 and l2 only traverse one
map once. On the other hand, l∪ requires |Φ1| × |Φ2| operations, where |Φ| is
the number of non trivial implications in Φ. However, any implication 〈p → l〉
that held before the control-flow split (and that has not been invalidated since)
still exists in Φ1 and Φ2, and will exist in the join. Then, any implication of
the form 〈p ∧ p′ → l !L l′〉 is redundant with 〈p → l〉 and does not need to be
considered. An optimized implementation should thus consider only the subparts
of the maps that are distinct. In order to further speed up the analysis, we can
also use a more approximate join, that keeps only implications 〈p → l1 !L l2〉
such that 〈p → l1〉 ∈ Φ1 and 〈p → l2〉 ∈ Φ2.

The refine and reduce operators alter the values guarded in the implications,
w.r.t. the context (for refine) and weaker guards (for reduce). Nevertheless, the
value under the true guard is quite special, as it is the broadest one. We can
define easier to compute versions of these operators, at the expense of precision.
They only refine the value under true, and reduce other values accordingly:

reduce (I) � λp. I (p) \L I (true)

refine (h, (c, I)) � canonize′
(
c ∧ h, I

[
true �→

�
L {I (p) | h ⇒ p}

])
5 Applications

This section describes the two abstract domains on which we have instanciated
a predicated analysis in the Frama-C platform. Note that our framework could
also be applied to other domains, e.g. intervals or the “valid file descriptors”
domain used for Fig. 1.

5.1 A First Abstract Domain: Initialized Variables

A first simple domain retains at each progam point the set of variables that were
properly initialized. Our experiments on a generated C code, where initialization
of variables happens far before their uses, showed that this domain is very useful.
In the abstract semantics of this domain, we introduce a new default value ∅ in
V, to which all variables are equal at program entry (i.e. S (0) � {λx.∅}).

γinit (V) = {ρ | ∀x ∈ V, ρ (x) �= ∅}

�x := e��init (V) =

{
V ∪ {x} if deps (e) ⊆ V

V \ {x} otherwise

�c ���init (V) = V

deps (x := e) � deps (e)

deps (c �) � deps (c)

The execution of a statement is correct when all the involved variables are
initialized. We extend deps to instuctions: deps (i) denotes the set of variables
the statement i depends on. Then, a program P is correct according to this
initialized semantics when ∀ (n, i,m) ∈ P, deps (i) ⊆ S

�
init (n).

Improving Static Analyses of C Programs with Conditional Predicates 151

�c �, p��eq×C (E) �
{
E ∪ {e1 = e2} if p ≡ true and c = (e1 = e2)

E otherwise

�x := e, p��eq×C (E) �
{
killeq (x,E) ∪ {x = e} if p ≡ true and x /∈ deps (e)

killeq (x,E) otherwise

killeq (v,E) � {(a = b) ∈ E | v /∈ deps (a) ∧ v /∈ deps (b)}
E \eq F � {(a = b) ∈ E | (a = b) /∈ F}
γeq (E) � {ρ | (a = b) ∈ E ⇒ �a�ρ = �b�ρ}

Fig. 8. Abstract semantics for the equality domain

5.2 A Second Abstract Domain: Equalities

Our experiments also relied on a symbolic domain tracking equalities between
C expressions. It aims at enhancing the precision of Frama-C’s existing value
analysis plugin, whose abstract domains are non-relational. Our intents are also
somewhat similar to those of Miné [12], in particular abstracting over temporary
variables resulting from code normalization. Our equality domain boils down
to retaining equalities stemming from assignments or equality conditions. Its
formal definition is presented in Fig. 8, where the set E of equalities increases
on equality assume statements, and on assignments that do not refer to the
variable being modified. To be sound, the transfer function on assignments must
also remove equalities that involve the overwritten variable, through the killeq
operator. Following Sect. 4.1, we present simplified transfer functions, for which
only the true guard is enriched, and in which the operator \eq can be used to
remove redundant equalities.

This domain lends itself to a natural extension of our analysis, namely the
strengthening of the context by backward-propagating information from L when
modifying the context. For example, the equalities can be used to quotient the
context by equal expressions. Furthermore, during the weakening of a context –
when the truth value of one of its litterals is modified – we may substitute the
litteral by an expression equal to it, instead of resetting the context.

i f (p) {
. . .
h = e ;

} else {
h = 0 ;

}
i f (h)

. . .

Fig. 9. Code pattern

Moreover, we were faced with code patterns similar
to the one presented in Fig. 9, in which the condition
of a branch is defined within a previous one – resulting
in an implicit dependency between the two conditions
h and p. To handle this pattern, we extend refine so
that, when computing refine (h, (c, I)) with I contain-
ing 〈p → (h = 0)〉, then we also add ¬p to the new
context.

Thus, imprecision in the refinement of contexts can
be reduced by crossing information between underly-
ing and predicated domains.

152 S. Blazy, D. Bühler, and B. Yakobowski

0

100

200

300

400

500

0 1 2 3 5 10

in
it
ia
li
ze
d
a
ss
er
ti
o
n
s
to

b
e
va

li
d
a
te
d

size of predicates (context and guards)

slevel = 1
slevel = 100

slevel = 1000

slevel
assertions

to be validated
initialization
assertions

validated assertions/clevel

1 2 3 5 10

1 632 439 225 267 296 305 308 6.4s

10 600 409 199 241 270 279 282 9.8s

100 504 315 166 198 223 235 236 38s

1000 430 243 121 142 160 169 172 502s

6s 9s 15s 24s 116s time

Fig. 10. Experimental results

6 Experimental Results

We have integrated our predicated analyses framework as a new plugin of the
Frama-C platform. This plugin runs above the value analysis plugin (abbrevi-
ated as VA), which we mainly use to get aliasing information on pointers. This
information is needed to ensure the soundness of the deps operator.

Perimeter of our Analysis. At each program point where it cannot guarantee the
absence of run-time error, VA emits as an alarm an acsl assertion that excludes
the failure case. These alarms may correspond to real bugs, if the statement can
give rise to an error at execution time, or may be due to a lack of precision. To
limit imprecisions caused by junctions in the control-flow graph, VA implements
an instance of trace partitionning, and propagates separately multiple abstract
states coming from different branches. As dissociating every feasible execution
path leads to untractable analyses, the number of parallel states maintained by
VA is limited but configurable by the slevel parameter. Still, high slevel values
may lead to high analysis time.

Using a predicated analysis over a simple domain to prove some of the acsl

assertions emitted by VA can avoid this blow up. By construction, we mainly

Improving Static Analyses of C Programs with Conditional Predicates 153

improve VA’s results on successive assume statements with identical conditions1.
Although such pattern is relatively unusual in idiomatic C code, it is much more
frequent in generated programs, for which our method is well adapted.

Some generated programs can include a very large number of nested condi-
tional branchs and loops, leading to overly wide contexts in our own analysis. To
avoid a complexity explosion, we limit the number of litterals in the predicates
used in contexts and guards (thereby decreasing the precision of our results),
according to a parameter clevel. Conversely, our prototype implements a precise
version of the abstract semantics operators presented in Sect. 3, without the
relaxations proposed in Sect. 4.2.

Results. We tested our plugin on a C program of 5000 lines generated by the
industrial environment scade, devoted to real-time software. As often with such
codes, multiple conditionals are heavily used – typically to test automata states
or clocks. Our results are presented in Fig. 10. We first applied VA, which emitted
various assertions to further validate (column 2). As expected, a higher slevel
results in fewer alarms. Between 55% and 70% of those are assertions requiring
variables to be properly initialized (column 3), which are those our underlying
domain understands. We then ran our predicated analysis, instantiated by the
domain presented in Sect. 5.1, with different limits for the size of predicates
(columns “validated assertions”). The last column indicates the analysis time of
VA, while that of the predicated analysis is given in the last line.

While VA produces significantly less alarms with a higher slevel, its anal-
ysis time also increases drastically. This is unsurprising, as fully partitioning
for k successive conditionals may require as much as 2k distinct states. On the
other hand, our plugin is effective to quickly validate numerous assertions left
unproven by VA, even with strongly limited predicates. The precision of our
analysis increases rapidly with the clevel parameter, while the analysis times re-
mains reasonable. More generally, it turns out that small contexts are sufficient
to retain most of the relevant information: less assertions remain to be validated
with clevel = 1 and slevel = 1 than with clevel = 0 and slevel = 1000. Intuitively,
even inside deeply nested conditionals (which generate complex contexts), only
the more recent guards are useful. In general, our results show that it is much
more cost efficient to increase the clevel parameter than the slevel parameter.

7 Conclusion

This work provides a generic framework to enhance the precision of standard
dataflow analyses. This framework constructs a derived predicated analysis able
to mitigate information loss at junction points of the control-flow graph, by
retaining the conditional values about each branch. Our analysis strives to min-
imize redundant information processing due to these disjunctions. Experimental
tests led through the static analysis platform Frama-C on generated C code
showed that a predicated analysis over simple domains can significanlty improve
the results of prior analyses.

1 Modulo conjunction, disjunction and negation, but only over uninterpreted expres-
sions; in particular, x < y and y > x are not considered as being equivalent guards.

154 S. Blazy, D. Bühler, and B. Yakobowski

The litterals of our predicates are expressions that we currently consider as
opaque. In order to improve our analysis, we intend to give some meaning to
the operators in these expressions and to extend the logical implication between
guards accordingly. In particular, we will handle successive conditions on dis-
tinct but related expressions, such as (x ≥ 0) � and (x ≥ 2) �. Moreover, prior
syntactic analyses or heuristics could help to select relevant predicates for the
contexts, which would no longer be extended at each assume statement. This
would avoid maintaining implication guards that will never be useful again later
in the program. Finally, it would be worthwhile to apply our predicated analysis
over more complex abstract domains.

References

1. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Pre-
vosto, V.: ACSL: ANSI/ISO C Specification Language, Version 1.8 (2014),
http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf

2. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

3. Chebaro, O., Cuoq, P., Kosmatov, N., Marre, B., Pacalet, A., Williams, N.,
Yakobowski, B.: Behind the scenes in sante: a combination of static and dynamic
analyses. Autom. Softw. Eng. 21(1), 107–143 (2014)

4. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:
Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130.
Springer, Heidelberg (2012)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

6. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
Combination of abstractions in the ASTRÉE static analyzer. In: Okada, M., Satoh,
I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg (2007)

8. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C - A software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012)

9. Cuoq, P., Prevosto, V., Yakobowski, B.: Frama-C’s value analysis plug-in,
http://frama-c.com/download/value-analysis-Neon-20140301.pdf

10. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. In: Wer-
melinger, M., Gall, H. (eds.) ESEC/SIGSOFT FSE, pp. 227–236. ACM (2005)

11. Graf, S., Säıdi, H.: Verifying invariants using theorem proving. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 196–207. Springer, Heidelberg
(1996)

12. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2006)

13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer
(2005)

14. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5) (2007)

